
Colombian Collegiate Programming League

CCPL 2013

Contest 6 -- June 8

Dynamic Programming

Problems
This set contains 10 problems; pages 1 to 18.

(Borrowed from several sources online.)

Page

A - Allergy Test . 1

B - Bus Tour . 3

C - Unicycle Counting . 5

D - Private Space . 7

E - Machine Works . 8

F - Fibonacci Words . 10

G - Room Service . 12

H - Honeycomb Walk . 14

I - Shares . 15

J - Pyramids . 17

Official site http://programmingleague.org
Official Twitter account @CCPL2003

0

http://programmingleague.org
https://twitter.com/CCPL2003

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 1

A - Allergy Test
Source file name: allergy.c, allergy.cpp or allergy.java

A test for allergy is conducted over the course of several days, and consists of exposing you to
different substances (so called allergens). The goal is to decide exactly which of the allergens you
are allergic to. Each allergen has a live duration D measured in whole days, indicating exactly
how many days you will suffer from an allergic reaction if you are allergic to that particular
substance. An allergic reaction starts to show almost immediately after you have been exposed
to an allergen which you are allergic to.

The test scheme has two action points per day:

I. At 8 o’clock each morning, at most one of the allergens is applied to your body.

II. At 8 o’clock each evening, you are examined for allergic reactions.

Thus an allergen with live duration D will affect exactly D allergic reaction examinations.

Of course, if you have two or more active allergens in your body at the time of an observed
reaction, you cannot tell from that information only, which of the substances you are allergic to.

You want to find the shortest possible test scheme given the durations of the allergens you
want to test. Furthermore, to allow simple large scale application the test scheme must be
non-adaptive, i.e., the scheme should be fixed in advance. Thus you may not choose when to
apply an allergen based on the outcome of previous allergic reaction examinations.

Input

The input consists of several test cases. The first line of each test case contains a single integer
k (1 ≤ k ≤ 20) specifying the number of allergens being tested for. Then follow k lines each
containing an integer D (1 ≤ D ≤ 7) specifying the live duration of each allergen.

The input ends with k = 0, which should not be processed as a test case.

The input must be read from standard input.

Output

For each test case, output the number of days of the shortest conclusive non-adaptive test
scheme.

A scheme ends the morning when you no longer have active allergens in your body, thus a test
scheme for a single allergen with live duration D takes D days.

The output must be written to standard output.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 2

Sample input

3

2

2

2

5

1

4

2

5

2

0

Sample output

5

10

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 3

B - Bus Tour
Source file name: bustour.c, bustour.cpp or bustour.java

Imagine you are a tourist in Warsaw and have booked a bus tour to see some amazing attraction
just outside of town. The bus first drives around town for a while (a long while, since Warsaw
is a big city) picking up people at their respective hotels. It then proceeds to the amazing
attraction, and after a few hours goes back into the city, again driving to each hotel, this time
to drop people off.

For some reason, whenever you do this, your hotel is always the first to be visited for pickup, and
the last to be visited for dropoff, meaning that you have to suffer through two not-so-amazing
sightseeing tours of all the local hotels. This is clearly not what you want to do (unless for some
reason you are really into hotels), so let’s fix it. We will develop some software to enable the
sightseeing company to route its bus tours more fairly—though it may sometimes mean longer
total distance for everyone, but fair is fair, right?

For this problem, there is a starting location (the sightseeing company headquarters), h hotels
that need to be visited for pickups and dropoffs, and a destination location (the amazing
attraction). We need to find a route that goes from the headquarters, through all the hotels, to
the attraction, then back through all the hotels again (possibly in a different order), and finally
back to the headquarters. In order to guarantee that none of the tourists (and, in particular,
you) are forced to suffer through two full tours of the hotels, we require that every hotel that
is visited among the first bh/2c hotels on the way to the attraction is also visited among the
first bh/2c hotels on the way back. Subject to these restrictions, we would like to make the
complete bus tour as short as possible. Note that these restrictions may force the bus to drive
past a hotel without stopping there (this is not considered visiting) and then visit it later, as
illustrated in the first sample input.

Input

The input consists of several test cases. The first line of each test case consists of two integers n
and m satisfying 3 ≤ n ≤ 20 and 2 ≤ m, where n is the number of locations (hotels, headquarters,
attraction) and m is the number of pairs of locations between which the bus can travel.

The n different locations are numbered from 0 to n− 1, where 0 is the headquarters, 1 through
n − 2 are the hotels, and n − 1 is the attraction. Assume that there is at most one direct
connection between any pair of locations and it is possible to travel from any location to any
other location (but not necessarily directly).

Following the first line are m lines, each containing three integers u, v, and t such that
0 ≤ u, v ≤ n− 1, u 6= v, 1 ≤ t ≤ 3600, indicating that the bus can go directly between locations
u and v in t seconds (in either direction).
The last case is followed by a single line containing 0 0.

The input must be read from standard input.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 4

Output

For each test case, display the case number and the time in seconds of the shortest possible
tour.

The output must be written to standard output.

Sample Input

5 4

0 1 10

1 2 20

2 3 30

3 4 40

4 6

0 1 1

0 2 1

0 3 1

1 2 1

1 3 1

2 3 1

0 0

Sample Output

Case 1: 300

Case 2: 6

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 5

C - Unicycle Counting
Source file name: unicycles.c, unicycles.cpp or unicycles.java

Going to circus college is not as fun as you were led to believe. You are juggling so many classes.
Trapeze class is sometimes up, sometimes down. There’s a lot of tension in your high-wire class.
And you’ve seen that lion taming can be cat-astrophic.

The one pleasure you find is in riding unicycles with your fellow classmates. Many people have
unicycles with different sized wheels. One day you notice that all their tires leave a small mark
on the ground, once per rotation. You decide to amuse yourself and avoid your classwork by
trying to determine how many unicycles have passed by on a given stretch of road. In fact, you
want to know the minimum number of unique unicycles that could have left the marks you
observe. You make the simplifying assumption that any unicycle riding on the road will ride
completely from the beginning to the end.

The figures below illustrate the sample input. Each thick black vertical stripe represents a mark
left by a tire.

Input

Each line of input represents the observations on a stretch of road. A line begins with two
integers 1 ≤ m ≤ 100 and 1 ≤ n ≤ 10, where m represents the length of the road and n
represents the number of marks you observe on the road. These are followed by n unique
integers a1, a2, ..., an, where 0 ≤ ai < m for all ai. These n integers represent the positions
where you observed a unicycle’s tire has left a mark. There will be at most 100 lines of input.
Input ends at end of file.

The input must be read from standard input.

Output

For each set of observations, print the minimum number of unicycles that could have produced
the observed marks.

The output must be written to standard output.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 6

Sample Input

10 5 1 3 5 7 9

10 4 1 3 7 9

20 10 0 4 5 7 8 10 12 14 15 16

Sample Output

1

2

3

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 7

D - Private Space
Source file name: space.c, space.cpp or space.java

People are going to the movies in groups (or alone), but normally only care to socialize within
that group. Being Scandinavian, each group of people would like to sit at least one space apart
from any other group of people to ensure their privacy, unless of course they sit at the end of a
row.

The number of seats per row in the cinema starts at X and decreases with one seat per row
(down to a number of 1 seat per row). The number of groups of varying sizes is given as a
vector (N1, . . . , Nn), where N1 is the number of people going alone, N2 is the number of people
going as a pair etc.

Calculate the seat-width, X, of the widest row, which will create a solution that seats all (groups
of) visitors using as few rows of seats as possible. The cinema also has a limited capacity, so
the widest row may not exceed 12 seats.

Input

The input consists of several test cases. The first line of each test case contains a single integer
n (1 ≤ n ≤ 12), giving the size of the largest group in the test case. Then follows a line with n
integers, the i-th integer (1-indexed) denoting the number of groups of i persons who need to be
seated.

The end of the input is given with a line containing 0.

The input must be read from standard input.

Output

A single number; the size of the smallest widest row that will accommodate all the guests. If
this number is greater than 12, output impossible instead.

The output must be written to standard output.

Sample input

3

0 1 1

3

2 1 1

0

Sample output

3

4

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 8

E - Machine Works
Source file name: works.c, works.cpp or works.java

You are the director of Arbitrarily Complex Machines (ACM for short), a company producing
advanced machinery using even more advanced machinery. The old production machinery has
broken down, so you need to buy new production machines for the company. Your goal is to
make as much money as possible during the restructuring period. During this period you will
be able to buy and sell machines and operate them for profit while ACM owns them. Due to
space restrictions, ACM can own at most one machine at a time.

During the restructuring period, there will be several machines for sale. Being an expert in the
advanced machines market, you already know the price Pi and the availability day Di for each
machines Mi. Note that if you do not buy machine Mi on day Di, then somebody else will buy
it and it will not be available later. Needless to say, you cannot buy a machine if ACM has less
money than the price of the machine.

If you buy a machine Mi on day Di, then ACM can operate it starting on day Di + 1. Each
day that the machine operates, it produces a profit of Gi dollars for the company.

You may decide to sell a machine to reclaim a part of its purchase price any day after you’ve
bought it. Each machine has a resale price Ri for which it may be resold to the market. You
cannot operate a machine on the day that you sell it, but you may sell a machine and use the
proceeds to buy a new machine on the same day.

Once the restructuring period ends, ACM will sell any machine that it still owns. Your task is
to maximize the amount of money that ACM makes during the restructuring.

Input

The input consists of several test cases. Each test case starts with a line containing three positive
integers N , C, and D. N is the number of machines for sale (N ≤ 105), C is the number of
dollars with which the company begins the restructuring (C ≤ 109), and D is the number of
days that the restructuring lasts (D ≤ 109).

Each of the next N lines describes a single machine for sale. Each line contains four integers
Di, Pi, Ri and Gi, denoting (respectively) the day on which the machine is for sale, the dollar
price for which it may be bought, the dollar price for which it may be resold and the daily profit
generated by operating the machine. These numbers satisfy 1 ≤ Di ≤ D, 1 ≤ Ri < Pi ≤ 109

and 1 ≤ Gi ≤ 109.

The last test case is followed by a line containing three zeros.

The input must be read from standard input.

Output

For each test case, display its case number followed by the largest number of dollars that ACM
can have at the end of day D + 1.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 9

Follow the format of the sample output.

The output must be written to standard output.

Sample Input

6 10 20

6 12 1 3

1 9 1 2

3 2 1 2

8 20 5 4

4 11 7 4

2 10 9 1

0 0 0

Sample output

Case 1: 44

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 10

F - Fibonacci Words
Source file name: fibonacci.c, fibonacci.cpp or fibonacci.java

The Fibonacci word sequence of bit strings is defined as:

F (x) =

0, if n = 0

1, if n = 1

F (n− 1) + F (n− 2), if n > 2

Here + denotes concatenation of strings. The first few elements are

F (0) = 0

F (1) = 1

F (2) = 10

F (3) = 101

F (4) = 10110

F (5) = 10110101

F (6) = 1011010110110

F (7) = 101101011011010110101

F (8) = 1011010110110101101011011010110110

F (9) = 1011010110110101101011011010110110101101011011010110101

Given a bit pattern p and a number n, how often does p occur in F (n)?

Input

The input contains several test cases. The first line of each test case contains the integer n
(0 ≤ n ≤ 100). The second line contains the bit pattern p. The pattern p is nonempty and has
a length of at most 100000 characters.

The input ends with n = −1.
The input must be read from standard input.

Output

For each test case, display its case number followed by the number of occurrences of the bit
pattern p in F (n). Occurrences may overlap. The number of occurrences will be less than 263.

The output must be written to standard output.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 11

Sample input

6

10

7

10

6

01

6

101

96

10110101101101

-1

Sample output

Case 1: 5

Case 2: 8

Case 3: 4

Case 4: 4

Case 5: 7540113804746346428

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 12

G - Room Service
Source file name: room.c, room.cpp or room.java

You are working for a company designing cute, funny robot vacuum cleaners. At a high level,
the robots’ behavior is divided into three modes:

1. Exploration

2. Vacuuming

3. Rampant Killing

Unfortunately, while consumer testing shows that the last two modes are working perfectly, the
exploration mode still has bugs. You’ve been put in charge of debugging.

At the beginning of the exploration mode, the robot is placed into a convex polygonal room.
It has sensors that should tell it where all the walls are. Your job is to write a program that
verifies that these readings are correct. To do this, the robot needs to physically touch every
wall in the room.

Your problem is this: given the shape of a convex polygonal room with N walls and a starting
point P inside it, determine the shortest route that touches each wall and then returns to P .
Touching a corner counts as touching both incident walls.

Input

The input contains several test cases. Each test case starts with a line containing the number of
vertices N of the polygon (3 ≤ N ≤ 100) and the integer coordinates Px and Py of the robot’s
starting point (−10000 ≤ Px, Py ≤ 10000). This is followed by N lines, each containing two
integers x, y (−10000 ≤ x, y ≤ 10000) defining a vertex of the polygon. Vertices are given
in counterclockwise order, all interior angles are less than 180 degrees, the polygon does not
self-intersect, and the robot’s starting point is strictly inside the polygon.

The last case is followed by a line containing 0.

The input must be read from standard input.

Output

For each test case, display the case number and the length of the desired route, accurate to two
decimal places.

The output must be written to standard output.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 13

Sample input

4 0 0

-1 -1

1 -1

1 1

-1 1

3 10 1

0 0

30 0

0 20

0

Sample output

Case 1: 5.66

Case 2: 36.73

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 14

H - Honeycomb Walk
Source file name: honey.c, honey.cpp or honey.java

A bee larva living in a hexagonal cell of a large honeycomb decides to creep for a walk. In each
‘‘step’’ the larva may move into any of the six adjacent cells and after n steps, it is to end up in
its original cell.

Your program has to compute, for a given n, the number of different such larva walks.

Input

The first line contains an integer giving the number of test cases to follow. Each case consists
of one line containing an integer n, where 1 ≤ n ≤ 14.

The input must be read from standard input.

Output

For each test case, output one line containing the number of walks. Under the assumption
1 ≤ n ≤ 14 , the answer will be less than 231.

The output must be written to standard output.

Sample input

2

2

4

Sample output

6

90

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 15

I - Shares
Source file name: shares.c, shares.cpp or shares.java

You are a successful business man who uses to invest some money in the shares market. As a
successful man you manage a network of well prepared spies assistants that can assure you the
values of the shares for the next day. Each day you have a capital that you can spend in the
market according to your assistants suggestions. In addition, you can only buy packs of shares
from several salesmen.

Your goal is to select which packs should be bought in order to maximize the profits without
exceeding the amount of capital you have.

Input

The input consists of several test cases. The first line of each test case contains the maximum
capital C that you can invest (0 < C ≤ 230). The next line has two integers, the number of total
shares N (0 < N ≤ 500) and the number of packs P (0 < P ≤ 50000). Each one of the following
N lines describe the N shares. Each line contains two integers ai and ti representing the current
price and the expected price for the next day of the ith share (1 ≤ i ≤ N), respectively. Finally,
the following P lines contain the information of the packs, one per line. For each line, the first
integer R represents the number of different shares that contains this pack. Then for each share
type you have two integers sj and qj (1 ≤ j ≤ R), where sj is the id of the jth share and qj is
the quantity of the jth share in this pack.

The input ends with EOF , i.e., with the end of file.

The input must be read from standard input.

Output

For each test case of the input, print an integer that indicates the maximum expected profit for
the next day.

The output must be written to standard output.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 16

Sample Input

500

4 6

10 15

8 6

20 15

12 12

3 1 6 2 7 3 8

3 3 8 1 10 2 4

3 4 10 2 5 1 10

2 1 4 2 4

1 3 2

2 4 3 2 1

200000000

5 30

2800 3500

1400 4800

2900 2800

500 3800

3300 4700

2 2 13 4 15

4 4 1 1 22 3 17 5 22

1 3 2

1 3 6

4 1 11 2 5 3 7 5 15

1 5 1

4 2 26 1 21 3 8 5 26

2 3 5 2 26

4 2 30 4 12 3 7 5 14

3 3 8 2 20 5 3

1 5 30

2 1 29 3 3

5 3 3 1 20 5 26 4 9 2 25

3 1 2 2 16 3 5

2 5 5 4 26

5 2 18 5 10 4 18 1 12 3 30

3 2 5 3 27 5 4

4 3 2 4 8 1 20 2 6

3 2 14 1 1 4 22

5 2 23 3 26 1 27 5 3 4 6

1 2 16

4 1 13 4 10 2 23 5 2

1 1 14

1 2 20

1 3 14

2 3 21 1 22

1 2 27

3 5 24 1 26 3 13

5 4 15 3 3 2 21 1 5 5 16

4 2 22 5 1 4 10 1 30

Sample output

52

2168800

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 17

J - Pyramids
Source file name: pyramids.c, pyramids.cpp or pyramids.java

It is not too hard to build a pyramid if you have a lot of identical cubes. On a flat foundation
you lay, say, 10× 10 cubes in a square. Centered on top of that square you lay a 9× 9 square
of cubes. Continuing this way you end up with a single cube, which is the top of the pyramid.
The height of such a pyramid equals the length of its base, which in this case is 10. We call this
a high pyramid.

If you think that a high pyramid is too steep, you can proceed as follows. On the 10× 10 base
square, lay an 8× 8 square, then a 6× 6 square, and so on, ending with a 2× 2 top square (if
you start with a base of odd length, you end up with a single cube on top, of course). The
height of this pyramid is about half the length of its base. We call this a low pyramid.

Once upon a time (quite a long time ago, actually) there was a pharaoh who inherited a large
number of stone cubes from his father. He ordered his architect to use all of these cubes to
build a pyramid, not leaving a single one unused. The architect kindly explained that not every
number of cubes can form a pyramid. With 10 cubes you can build a low pyramid with base
3. With 5 cubes you can build a high pyramid of base 2. But no pyramid can be built using
exactly 7 cubes.

The pharaoh was not amused, but after some thinking he came up with new restrictions.

1. All cubes must be used.

2. You may build more than one pyramid, but you must build as few pyramids as possible.

3. All pyramids must be different.

4. Each pyramid must have a height of at least 2.

5. Satisfying the above, the largest of the pyramids must be as large as possible (i.e.,
containing the most cubes).

6. Satisfying the above, the next-to-largest pyramid must be as large as possible.

7. And so on...

Drawing figures and pictures in the sand, it took the architect quite some time to come up with
the best solution.

Write a program that determines how to meet the restrictions of the pharaoh, given the number
of cubes.

Input

The input consists of several test cases, each one on a single line. A test case is an integer c,
where 1 ≤ c ≤ 106, giving the number of cubes available.

The last test case is followed by a line containing a single zero.

The input must be read from standard input.

Colombian Collegiate Programming League - CCPL 2013 @CCPL2003 18

Output

For each test case, display its case number followed by the pyramids to be built. The pyramids
should be ordered with the largest first. Pyramids are specified by the length of their base
followed by an L for low pyramids or an H for high pyramids. If two differenct pyramids have
the same number of cubes, list the high pyramid first. Print ‘‘impossible’’ if it is not possible
to meet the requirements of the pharaoh.

Follow the format of the sample output.

The output must be written to standard output.

Sample input

29

28

0

Sample output

Case 1: 3H 3L 2H

Case 2: impossible

	A - Allergy Test
	B - Bus Tour
	C - Unicycle Counting
	D - Private Space
	E - Machine Works
	F - Fibonacci Words
	G - Room Service
	H - Honeycomb Walk
	I - Shares
	J - Pyramids

